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1 Radial Limits of Harmonic Functions on the Disc

1.1 Radial limits of harmonic functions on the disc

Let P : M(OD) — h', the set of all harmonic functions u in D such that f|2|=1 lu(rz)| |dz| <
C for all r, send p — Pu = u. We showed last time that this is a homeomorphism.

Theorem 1.1. Let u € h', and consider the Lebesgue decomposition of the representing
measure pu: dp = f/(27) |dz| + d\, where f € LY(OD), and dX is singular with respect to
|dz|.

1. Then for a.e. z € D, the radial limit lim, 1 u(rz) exists and equals f(z).

2. If dp = f/(27)|dz|, is absolutely continuous and u(z) = |,

lw|=1 P(z,w)du(w), then
uy = [ in L'(0D).

Proof. Write
u@) = [ Pewduto) = [ Pl duto).
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Recall that for a.e. ¢ € R, we have by the Lebesgue differentiation theorem that
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We claim that if ¢ € R is as above, then lim,_,; u(re’¥) exists and equals f(e¥). We
may assume that ¢ =0 and f(1) = 0. Then
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It suffices to show that if |[nu is a measure such that (1/p) f[ip ] |dv(t)] — 0 as p — 0,
then

/P(w,eit) dv(t) =l 0, x e R.

Here,

/ P(x,e") du(t)
m/2<[t[<m

since P(z,e") — 0 uniformly. Write § = 1 — , and consider

P(z,e™) dv(t —/ P(z,e") dv(t +/ P(z,e™) dv(t).
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Here, C' > 0 is a large constant to be chosen later. When vC¢§ < [t| < |7/2],
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Given € > 0, we get (taking C' large but fixed)

/ P(x,e®)dv(t)| <e
VC<|t| < /2

for all small § > 0.
Let 61 = vC9, and let
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Then ¢ > 0, ¢ is even, and ¢ is decreasing on [0, 7|. It remains to understand

/tsmp(x’ ) autt) = / o(t) du(t).

[t]|<é1
We have
/ vt <ep,  0<p<én.
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Write
t o1
o(t) = p(61) + / (s ds = p(61) — [ H(s—)g/(s) ds.
o1 0
where



is the Heaviside function. Consider

01
/[0,51} o(t) dv(t) = 90(51)/[075_1} dv(t) —/[0751] < i H(s —t)¢'(s) ds) dv(t).
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Then

01
< ¢(d1)ed —/0 ¢'(s) < o0 H(s—1) |dV(t)\> ds
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/ () dui(t)
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Integrate by parts.

The contribution of [—§, 0] is estimated similarly. We get
u(z) = / Pla, e du(t) 25 0.

For the 2nd part of the theorem, given ¢ >, let ¢ € C'(9D) be such that || f — || <e.
If we write u = P f, then

I(P)r = flle < [(PF)r = (Pl + |[(PY)r = ¥l e

<IP(f=)l1 <If—=ll ;1 <e  —0 uniformly on 0D

We get u, = (Pf), — f in L' O

1.2 The Riesz-Riesz theorem

Let H! = Hol(D) N h! (the Hardy space). It can be show that the representing measure
of and H! function is absolutely continuous.

Theorem 1.2 (F. and M. Riesz'). Let ju be a measure on 0D such that f[o o) et du(t) =0

forn =1,2,... (i.e. the negative Fourier coefficients of y vansish). Then u is absolutely
continuous.

'These two were brothers. This is the only collaboration between them.



Proof. Here is the idea. Let f = Pu € h'. The vanishing of the Fourier coefficients implies
that f € Hol(D). So p is absolutely continuous. O
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