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1 Radial Limits of Harmonic Functions on the Disc

1.1 Radial limits of harmonic functions on the disc

Let P :M(∂D)→ h1, the set of all harmonic functions u in D such that
∫
|z|=1 |u(rz)| |dz| ≤

C for all r, send µ 7→ Pµ = u. We showed last time that this is a homeomorphism.

Theorem 1.1. Let u ∈ h1, and consider the Lebesgue decomposition of the representing
measure µ: dµ = f/(2π) |dz| + dλ, where f ∈ L1(∂D), and dλ is singular with respect to
|dz|.

1. Then for a.e. z ∈ ∂D, the radial limit limr→1 u(rz) exists and equals f(z).

2. If dµ = f/(2π)|dz|, is absolutely continuous and u(z) =
∫
|w|=1 P (z, w) dµ(w), then

ur → f in L1(∂D).

Proof. Write

u(z) =

∫
|w|=1

P (z, w) dµ(w) =

∫
[−π,π)

P (z, riϕ) dµ(ϕ).

Recall that for a.e. ϕ ∈ R, we have by the Lebesgue differentiation theorem that

1

ρ

∫ ϕ+ρ

ϕ−ρ
|f(eit)− f(eiϕ)| dt ρ→0−−−→ 0,

1

ρ

∫
[ϕ−ρ,ϕ+ρ]

|dλ(t)| → 0.

We claim that if ϕ ∈ R is as above, then limr→1 u(reiϕ) exists and equals f(eiϕ). We
may assume that ϕ = 0 and f(1) = 0. Then

1

ρ

∫ ρ

−ρ
|f(eit)| dt→ 0,

1

ρ

∫
[−ρ,ρ]

|dλ(t)| → 0.
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It suffices to show that if |nu is a measure such that (1/ρ)
∫
[−ρ,ρ] |dν(t)| → 0 as ρ → 0,

then ∫
P (x, eit) dν(t)

x→1−−−−−→ 0, x ∈ R.

Here, ∫
π/2≤|t|≤π

P (x, eit) dν(t)

since P (x, eit)→ 0 uniformly. Write δ = 1− x, and consider∫
|t|≤ pi/2

P (x, eit) dν(t) =

∫
√
cδ≤|t|≤π/2

P (x, eit) dν(t) +

∫
|t|≤
√
cδ
P (x, eit) dν(t).

Here, C > 0 is a large constant to be chosen later. When
√
Cδ ≤ |t| ≤ |π/2|,

P (x, eit) =
1− x2

|x− eit|2
=

2δ − δ2

(x− cos(t))2 + sin2(t)
≤ 2δ

sin2(t)
≤ π2δ

t2
≤ π2δ

Cδ
=
π2

C
.

Given ε > 0, we get (taking C large but fixed)∣∣∣∣∣
∫
√
Cδ≤|t|≤π/2

P (x, eit) dν(t)

∣∣∣∣∣ ≤ ε
for all small δ > 0.

Let δ1 =
√
Cδ, and let

ϕ(t) = P (x, eit) =
1− x2

1 + x2 − 2x cos(t)
.

Then ϕ > 0, ϕ is even, and ϕ is decreasing on [0, π]. It remains to understand∫
|t|≤
√
Cδ
P (x, eit) dν(t) =

∫
|t|≤δ1

ϕ(t) dν(t).

We have ∫
[−ρ,ρ]

|dν(t)| ≤ ερ, 0 < ρ ≤ δ1.

Write

ϕ(t) = ϕ(δ1) +

∫ t

δ1

ϕ′(s) ds = ϕ(δ1)−
∫ δ1

0
H(s− t)ϕ′(s) ds,

where

H(τ) =

{
1 τ > 0

0 τ ≤ 0
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is the Heaviside function. Consider∫
[0,δ1]

ϕ(t) dν(t) = ϕ(δ1)

∫
[0,δ−1]

dν(t)︸ ︷︷ ︸
≤εδ1

−
∫
[0,δ1]

(∫ δ1

0
H(s− t)ϕ′(s) ds

)
dν(t).

Then ∣∣∣∣∣
∫
[0,δ1]

ϕ(t) dν(t)

∣∣∣∣∣ ≤ ϕ(δ1)εδ1 −
∫ δ1

0
ϕ′(s)

(∫
[0,δ1]

H(s− t) |dν(t)|

)
ds

≤ ϕ(δ1)εδ1 −
∫ δ1

0
ϕ′(s)

(∫
[0,s]
|dν(t)|

)
︸ ︷︷ ︸

≤εs

ds

Integrate by parts.

≤ ϕ(δ1)εδ − 1− ε [ϕ(s)s]δ10 + ε

∫ δ1

0
ϕ(s) ds

= ε

∫ δ1

0
ϕ(s) ds

≤ ε.

The contribution of [−δ, 0] is estimated similarly. We get

u(x) =

∫
P (x, eit) dν(t)

x→1−−−−−→ 0.

For the 2nd part of the theorem, given ε >, let ψ ∈ C(∂D) be such that ‖f −ψ‖L1 ≤ ε.
If we write u = Pf , then

‖(Pf)r − f‖L1 ≤ ‖(Pf)r − (Pψ)r‖L1︸ ︷︷ ︸
≤‖P(f−ψ)‖h1≤‖f−ψ‖L1≤ε

+ ‖(Pψ)r − ψ‖L1︸ ︷︷ ︸
→0 uniformly on ∂D

+ε.

We get ur = (Pf)r → f in L1.

1.2 The Riesz-Riesz theorem

Let H1 = Hol(D) ∩ h1 (the Hardy space). It can be show that the representing measure
of and H1 function is absolutely continuous.

Theorem 1.2 (F. and M. Riesz1). Let µ be a measure on ∂D such that
∫
[0,2π) e

int dµ(t) = 0

for n = 1, 2, . . . (i.e. the negative Fourier coefficients of µ vansish). Then µ is absolutely
continuous.

1These two were brothers. This is the only collaboration between them.
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Proof. Here is the idea. Let f = Pµ ∈ h1. The vanishing of the Fourier coefficients implies
that f ∈ Hol(D). So µ is absolutely continuous.
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